Skip to contents

Utilities for submitting teams

Functions to help teams create valid submission model output files.

validate_submission()
Validate a submitted model data file.
submission_tmpl()
Create a model output submission file template

Higher level validation functions

Functions combining appropriate check unit test used for higher level validations. All return hub_validations S3 class objects.

validate_model_data()
Validate the contents of a submitted model data file
validate_model_file()
Valid file level properties of a submitted model output file.
validate_model_metadata()
Valid properties of a metadata file.
validate_pr()
Validate Pull Request
validate_submission()
Validate a submitted model data file.
validate_submission_time()
Validate a submitted model data file submission time.
check_for_errors()
Raise conditions stored in a hub_validations S3 object

Unit validation checks

Unit validation checks. All return hub_check S3 class objects.

check_config_hub_valid()
Check hub correctly configured
check_file_exists()
Check file exists at the file path specified
check_file_format()
Check file format is accepted by hub.
check_file_location()
Check file is being submitted to the correct folder
check_file_name()
Check a model output file name can be correctly parsed.
check_file_read()
Check file can be read successfully
check_for_errors()
Raise conditions stored in a hub_validations S3 object
check_metadata_file_exists()
Check whether a metadata schema file exists
check_metadata_file_ext()
Check file is being submitted to the correct folder
check_metadata_file_location()
Check that the metadata file is being submitted to the correct folder
check_metadata_file_name()
Check whether the file name of a metadata file matches the model_id or combination of team_abbr and model_abbr specified within the metadata file
check_metadata_matches_schema()
Check whether a metadata file matches the schema provided by the hub
check_metadata_schema_exists()
Check whether a metadata schema file exists
check_submission_metadata_file_exists()
Check whether a metadata file for the given model exists
check_submission_time()
Checks submission is within the valid submission window for a given round.
check_tbl_col_types()
Check model data column data types
check_tbl_colnames()
Check column names of model output data
check_tbl_match_round_id()
Check model output data tbl round ID matches submission round ID.
check_tbl_rows_unique()
Check model data rows are all unique
check_tbl_spl_compound_taskid_set()
Check model output data tbl sample compound task id sets for each modeling task match or are coarser than the expected set defined in the config.
check_tbl_spl_compound_tid()
Check model output data tbl samples contain single unique values for each compound task ID within individual samples
check_tbl_spl_n()
Check model output data tbl samples contain the appropriate number of samples for a given compound idx.
check_tbl_spl_non_compound_tid()
Check model output data tbl samples contain single unique combination of non-compound task ID values across all samples
check_tbl_unique_round_id()
Check model output data tbl contains a single unique round ID.
check_tbl_value_col()
Check output type values of model output data against config
check_tbl_value_col_ascending()
Check that quantile and cdf output type values of model output data are non-descending
check_tbl_value_col_sum1()
Check that pmf output type values of model output data sum to 1.
check_tbl_values()
Check model output data tbl contains valid value combinations
check_tbl_values_required()
Check all required task ID/output type/output type ID value combinations present in model data.
check_valid_round_id()
Check whether the round_id determined for the submission is valid
check_valid_round_id_col()
Check that any round_id_col name provided or extracted from the hub config is valid.

Optional unit validation checks

Optional unit validation checks. All return hub_check S3 class objects and need to be deployed via validations.yml file.

opt_check_metadata_team_max_model_n()
Check that submitting team does not exceed maximum number of allowed models per team
opt_check_tbl_col_timediff()
Check time difference between values in two date columns equal a defined period.
opt_check_tbl_counts_lt_popn()
Check that predicted values per location are less than total location population.
opt_check_tbl_horizon_timediff()
Check time difference between values in two date columns equals a defined time period defined by values in a horizon column

Lower level functions

Lower level functions for assisting users in developing custom unit checks.

capture_check_cnd()
Capture a condition of the result of validation check.
capture_check_info()
Capture a simple info message condition
capture_exec_error()
Capture an execution error condition
capture_exec_warning()
Capture an execution warning condition
is_success() is_failure() is_error() is_info() not_pass() is_exec_error() is_exec_warn() is_any_error()
Get status of a hub check
parse_file_name()
Parse model output file metadata from file name
read_model_out_file()
Read a model output file
try_check()
Wrap check expression in try to capture check execution errors
expand_model_out_grid()
Create expanded grid of valid task ID and output type value combinations
get_tbl_compound_taskid_set()
Detect the compound_taskid_set for a tbl for each modeling task in a given round.
match_tbl_to_model_task()
Match model output tbl data to their model tasks in config_tasks.

<hub_validations> methods

Methods for <hub_validations> S3 objects.

print(<hub_validations>)
Print results of validate_...() function as a bullet list
print(<pr_hub_validations>)
Print results of validate_pr() function as a bullet list
combine()
Concatenate hub_validations S3 class objects
new_hub_validations() as_hub_validations()
Create new or convert list to hub_validations S3 class object